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APPENDIX 3. SPECTRUM OF THE CHARGE 
DISTRIBUTION IN POLYCRYSTALS 

From Eqs. (19) and (42) for the one-dimensional case 

|g*|VcB=l+E(l-w/L){exp[i(ic-ir)f»]+c.c.}, (A7) 

where K=kd. Using the relations 

X) exp(imx) 

X) m exp(iwx) 
ra=l 

exp[ i^ (L+l ) ] 
= {(L+l) sin(J^L) sin(^) 

2 sin2(§#) 
— i[L cos(JxZ) sinGb) —sin(^Z) cos(Jx)]} , (A9) 

one finds after trivial calculations 

| qk12/e2= sin2JZ,(K-7r)/Z, cos2i/c, (A10) 

= e x p [ ^ ( L + l ) ] sin(i#L)/sin(§#), (A8) which is equivalent to Eq. (43). 
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A variational method closely related to the intermediate coupling method of Lee, Low, and Pines is used 
to calculate the ground-state energy and low-lying excited states of the Frohlich Hamiltonian with a uni
form time-independent magnetic field. The energy is calculated in a power series in coc/co to order (coc/co)2, 
where co c is the cyclotron resonance frequency of the electron in the absence of electron-phonon interaction 
and co is the frequency of the longitudinal optical phonons. It is shown that in the presence of electron-
phonon interaction the energy of the nth. magnetic level is no longer proportional to n and that the effective 
mass for motion along the direction of the magnetic field is a function of n. The calculated variational en
ergies approach the weak field result expected from the calculation of Lee, Low, and Pines (LLP) when 
coc/co —> 0, and in the weak coupling limit the ground-state energy becomes exact to order (coc/co)2. 

INTRODUCTION 

IT is well known that if one wishes to compute the 
energy spectrum of a spinless electron of mass m in 

a magnetic field, H, with associated vector potential A, 
one replaces the energy operator p2/2m for the free 
electron by (p—eA/c)2/2m and solves the resulting 
Schrodinger equation. The energy spectrum so obtained 
can be written 

(#,V2w)+(»+i)«Wo, (1) 
where COQ=eH/mc, pz is the component of electron 
momentum along H, e is the magnitude of the electron 
charge, and n takes on values (0,1,2,- • •). 

In this paper we shall discuss what happens to the 
energy of an electron (more precisely, a polaron) in a 
polarizable but magnetically inert crystal when a rela
tively weak magnetic field is turned on. Polaron 
theory1-3 predicts that in the absence of external fields 

* Address after August 15, 1964: M. I. T. Lincoln Laboratory, 
Lexington, Massachusetts. 

1 H. Frohlich, Advances in Physics (Taylor & Francis, Ltd., 
London, 1954), Vol. 3, p. 325. We use the notation of Frohlich 
unless otherwise specified. 

2 T. D. Lee, F. E. Low, and D. Pines, Phys. Rev. 90, 297 (1953). 
This paper will henceforth be referred to as LLP. 

3 Particularly useful as a survey of the entire subject of polarons 
is the book Polarons and Excitons, edited by C. G. Kuper and G. D. 
Whitfield (Oliver & Boyd, Ltd., Edinburgh, 1963). 

the polaron energy spectrum has the form 

p2/2in*+ (Kp*/4m2ho})+0(p«/Mz(ha>)2), (2) 

if (p2/2m)<<Cfto), where co is the frequency of the longi
tudinal optical phonons and m is now and henceforth the 
band mass of the electron. In (2) m* is the "effective 
mass" of the polaron and K is a dimensionless constant. 

If we could proceed in analogy to the free electron we 
would regard (2) as the energy operator for the polaron, 
replace p2/2m in (2) by (p—eA/c)2/2m and solve the 
resulting Schrodinger equation. The energy levels of the 
polaron in the magnetic field would then take the form 

/*[(w+£)feoc+#*2] 
+ (X/fo)[(»+J)fo>c+ (p2/2m)J 

+Ol((n+i)ft^c+p2/2my/(^y2, (3) 
where 

fjL=tn/m>* (4) 

and 
o)c=eH/mc. 

At this point (3) is only suggestive; it motivates the 
more careful study of low-lying polaron energy levels to 
be undertaken in the present paper. We shall show, to 
the accuracy of our calculation, that in fact (3) becomes 
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exact in the limit 

coc —> 0 with ncx)c constant. (5) 

The Frohlich Hamiltonian will be used to describe the 
electron-phonon system, which means that we treat the 
lattice as a continuous polarizable medium and assume 
that, aside from the polarization energy, the electron-
lattice interaction can be taken into account by merely 
replacing the electron mass by an effective band mass 
(which may be field-dependent) .4 

VARIATIONAL CALCULATION 

We can omit the electron spin energy without loss of 
generality so that the Frohlich Hamiltonian with mag
netic field can be written1-5'6 

0e=3e0+3Ci, (6) 

3Co = E bkWk+ (px+i\2y)2+py
2+pz

2, (7) 

/4ira\1 / 2 1 
3Ci=( 1 L - ( 4 - * - ' i k t + h . c . ) , (8) 

\ S / k 

where (px,py,pz) is the electron momentum operator, 
X= (coc/o))1/2, r = (x,y,z) is the electron displacement, and 
we have used the vector potential A defined by 

eA/(2mfio)yi2c= (-§\2;y, 0, 0) 

to describe the external, uniform, time-independent 
magnetic field in the z direction. 

We shall build up our variational wave function step 
by step by a succession of unitary transformations on 
the normalized wave function 

**(»****«*> | $(»)> 10>= \pe,nfl), (9) 

where |0) is the phonon vacuum and |$(w)) is the one-
dimensional harmonic-oscillator eigenfunction defined 
by 

(£,2+ixy) I* (»)>= (»+i)x2l*(»)>. 
However, since we are interested only in the energy 
spectrum of 3C it will not be necessary to deal explicitly 
with wave functions; thus if our variational wave func
tion is II -11 pz,nfi), where 01 is a unitary operator, the 
corresponding variational energy is 

<o,»,p,-| oufcoi-11 ^*,^,o>. 

If 'It is a product of unitary operators: 

01 = Ol4Ol3Ol20ll (10) 

and if we define c\li^
i~1)c\ii~

1 = ̂ i ) with 3C(0)=3C then 
4 In this way we sidestep the important but difficult problem of 

the energy levels of an electron interacting simultaneously with a 
rigid periodic lattice and an external magnetic field. 

6 L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Addi-
son-Wesley Publishing Company Inc., Reading, Massachusetts, 
1958). 

6 From this point on all lengths are taken in units of 
fo= (V2^w)1/2, all momenta and wave numbers are in units of h/ro 
and 1/VQ, respectively, and all energies are in units of h$. 

the variational energy we seek is the diagonal part of 
3C(4) in the states | pz,n,0). The purpose of the rest of this 
section is to build up a set of operators Oli • • • 0U which 
yield a variational energy, ET, for low-lying states which 
has the properties: (a) ET goes over to the form ex
pected from the LLP variational energy2 in the limit 
(5), (b) ET is exact to order X4 in the weak coupling 
limit (a—»0). By "low-lying states" we shall mean 
states with excitation energy well below ho). 

All our transformations 01 i will be represented in the 
form c\li—eSi where SJ= —Si, and we shall define the 
various 01 »• by specifying the corresponding Si. 3C(i) is 
then computed from Si and JC(*_1) by applying the well 
known identity: 

3C<*> = eSWWe-s^W^+ZSiWWl 
+ ( l / 2 ! ) [ ^ , [ 5 ^ ^ > ] ] + . - - . (11) 

We begin with the first canonical transformation of 
LLP, defined by 

S i= i r -£k f t k t& k . (12) 

The effect of Oli on 3C(0) can be readily calculated by 
computing the effect of Oli on the different operators in 
3C(0) using (13), below. 

O l i ^ O l r ^ - E k W & k , 

O l i W O l r ^ e ^ k f , (13) 
O t i r O l r ^ r . 

The purpose of this transformation is to locate the 
origin of the coordinate system describing the phonon 
field, at the position of the electron. 

Transforming operators in (6)-(8) according to (13) 
we obtain 

Oe« = E nk+(px-Z kxnk+i\*yy 

+ (py—H kynk)
2+(pz-J2 kznk)

2 

+ ( W S ) 1 / 2 E ( V * ) ( * k t + J k ) . (14) 

As in the case of a free electron in a magnetic field in our 
gauge, the energy of the system will not depend upon 
px. To show this we eliminate px from (14) by intro
ducing 

0 l 2 = e x p - ( 2 ^ ^ / A 2 ) , 

which shifts the y coordinate of the electron. In our 
units Zpy,y]= — i so that 

0l2^0l2-1=y-(2^ a ; /X
2) . 

Thus 

X<2) = i ; nk+Z k . k k ^ i + n 2 - 2 n - i : knk 

+ ( W S ) 1 / 2 E ( V * ) ( * k t + i k ) , (15) 
where 

n=(J\2y,^) 
and, as in (14), 

nk=bk^bk. 

Since we will ultimately have to take expectation values 
in the state (9), which contains the state \$(n)) as a 
factor, it is convenient to rewrite (15) in terms of the 
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harmonic oscillator raising and lowering operators 
defined by: 

at=X-1tf l f+(f/2)X«y), a=\~Kpy~ (*/2)X2y). (16) 

In terms of these operators we write (15) in the form 

3C<2> = £ nk+Z k^nkm+p^+\^a+i)-2pz £ kznk 

— X[(at+a)2Z kynk—i((tf—a)Y, kztik~] 

+ ( 4 7 r a / S ) 1 / 2 L ( l A ) ( ^ t + ^ ) . (17) 

In order to motivate our final two transformations we 
note that (15) is the same as the corresponding LLP 
Hamiltonian [see LLP Eq. (9)] with the c number 
P in LLP replaced by the operator n . This suggests 
that we replace fk(P) in the LLP transformation 
exp[Ek A(P)(6kt-&k)] by / * ( n ) . We do this in our 
next two transformations, which amount to using an 
/ k ( n ) expanded to second order in powers of k«n . 

From another point of view we can regard our final 
two transformations as eliminating operators linear in 
phonon operators which contribute to the ground-state 
energy in order X4 and lower. This is done in analogy to 
the procedure in LLP, the effect of which is to remove all 
terms linear in the phonon operators from the Hamil
tonian. In the field-free case, considered by LLP, this 
can be done in a simple way because the only operators 
in the LLP Hamiltonian corresponding to (17) are 
phonon operators. 

To eliminate the dominant terms linear in the phonon 
operators we introduce 

£ 8 = £ [ / k + ( a t + a > k + f ( * t -
k 

•a )«k] (* k t - Jk) , (18) 

where fk, sk, and uk serve as variational parameters and 
are assumed to be real functions of k. 

c\izb^c\ld~
1 = bk

ji—/k— (a^+a)sk—i(at—a)uk 

+i1E(umsk—smuk)(bJ~bm), 
m 

cU.3a*Vir1:=tf+'L(sm-ium)(bJ-bm). 

(19) 

At this point we remark that pz in (17), can be re
placed by a c number since it commutes with ^ 
specified by (18) above, with ^ 4 to be given below, and 
with 3C(2). Thus, although in the ground state of 0C<2), 
pz=0, we will be able to obtain an upper bound to the 
energy of the lowest lying state of 3C(2) for given pz by 
minimizing the expectation value of 3C(4) in the states 
(9) for each value of pz. 

Examination of 3C(3) shows that the largest terms 

which are linear in phonon operators are terms with 
coefficients of order X2 and are quadratic in "a" opera
tors. To eliminate such terms to lowest order in X we 
specify ^4 by 

(20) 5 4 = 2 <rk(bk^—bk), 
k 

where ak= (tf+a)2rk+ (tf—a)Hk+i(tftf—aa)qk,an.drk, 
tk, and qk are variational parameters assumed to be real 
functions of k. 

If the reader has explicitly constructed 3C(3) from (19) 
and (17), he will have verified that it is a very bulky and 
ungainly expression. Worse yet, the commutator ex
pansion for 3C(4) obtained by inserting S4 and 3C(3) into 
(11) does not even terminate. In order to proceed 
further we must make certain assumptions about the 
size and structure of our six variational parameters. 
These assumptions, listed below, will be shown to be 
self-consistent at the end of the calculation. Thus we 
assume 

sk=kys(kykZipz) = 0(\), (21) 

uk=k x\u (k,kz,pz) = 0 (X) , 

and 
r k =0(X 2 ) , /k=0(X2) , £k=0(X2). (22) 

The assumed order in X of the various variational 
parameters in (21) and (22) is just equal to the order of 
the terms which they are designed to eliminate. For ex
ample, the term ^ksk(bki—bk)(tf+a) in Sg of (18) is 
designed to eliminate the term X (at-f a)Ylkk yfk (bk^+ bk) 
which would have been present in 3C(3) had we set s&=0 
in (18). Thus sk is assumed to be of order X. 

From (21) it follows that the largest terms in 5C(3) are 
of order X°; therefore, the expectation value of 3C(4) in 
states (9) is correctly given to order X4 by the expecta
tion value of the operator 

3C<3>+[S4,3C<3>]+J[S4,[S4,3C(3)]]. (23) 

Furthermore, we can extract the part of 3C(3) which 
contributes to the expectation value of (23) to order X4 

in the states (9) and replace 3C(3) in (23) by this ex
tracted part, 3C#(3). Picking out the terms of 3C(3) which 
contribute to 3C#(3) is simpler than one might expect 
because a large majority of operators in 5C(3) have 
coefficients of order X or higher. Such operators can 
contribute to ET to order X4 only if they are diagonal or 
if their commutator with S4 is diagonal. Using (20)-
(23), we can write down 3Cj?(3) almost by inspection from 
0C(3). The result is 

tt3) = E ( l - 2 f e ( l - ^ K + E k . k k ^ i + | X 2 + X 2 a t a + £ 3 - L C ( l - 2 f t . ( l - i ? ) ^ + J P ) / k - ( 4 T O / S ) 1 / 8 ( l / * ) ] 

X (bk^+bk)—X £ Z(tf+a)2kySk+(tf—a)2kxuk+i(tftf—aa)(kyUk—kxsk)2(bki+bk) 

+ E k . l / k / i ( J k t + J k ) ( * i t + 6 0 - 2 £ k . l [ (a t+a) 2 Sk 2 - ^-afuk^fx{b^bx) 
k^i 

~~4 X) k»l/k[(at"-r-a)2SkSi— (#t—a)2UbUi+i(aW—aa){sku\+uks\)~\{b\^-\-b\) (24) 
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and 

£ s = E ( 1 ~2kzpz+k2)fk
2-2(4XC/S)1/2 L ( l / * ) / k + ( E * . / k 2 ) 2 + E ( l - 2 * , ( l - ^ . + A 2 ) ( j k

2 + f i k 2 ) ( l + 2 a t a ) 

+ 4 ( / / + / „ 2 ) ( l + 2 t f t a ) + 2 X ( / s - ^ 

+ *.[E(l+£2K2+4/„2]+x2(£rs+ tf»)+4X( <r „ / s - *./„), (25) 
where 

/* = E ^ k / k , / i * = E ^»«k/k, 

^s=E^k2, ^ = E w S 
vpz^H kzfk

2. 

In (25) and in the following we consider ^2
2 to be a quantity of order X2, and we therefore neglect terms which 

contribute only to order pz
Q, \2pz*, \*pz

2 or higher. While it would have been possible to calculate Ez to higher order 
in pz

2 we feel that there is not much point in doing so (thereby adding further complication to an already compli
cated expression) when we are only able to calculate the energy associated with motion in the x-y plane to order X4. 
The variational result in any case is expected to be most accurate when X2<$C1 and p2<£\. 

In (23) we replace 3C(3) by 5C^(3), insert SA from (20), and evaluate the commutators using the orthogonality 
properties among fk, uk, and sk implied by (21). 

Omitting only, but not all, terms which have no diagonal part to order X4 or X2 >̂z
2 in the states (9), we obtain for 

our effective Hamiltonian, 3C.g(4): 

^ ^ = ^ 2 + | X 2 + X 2 a t a + £ 3 + E ( l - 2 ^ ( l - ^ + ^ 2 K 2 + 2 E [ ( l - 2 ^ ( l - ^ + F ) / k - ( W S ) 1 / 2 ( V * ) > k 
+ 2X E Z(af+a)2^vs^ (at~a)2kzUk+i(afaf—aa)(kyUk~kxsk)2(Tk 

+ 8 E [_(d+a)2kyskIs — (af — a)2kxukIu+i(afaf—aa)(kyUkIs—kxskIu)']<rk-2 E k*l/k/i(rko-i. (26) 

If we let £ 4 be the diagonal part of 3C^4>- ( |X2+X2a ta+E3+^,2) we get 

£ 4 = { E [ ( i - 2 £ * ( i - 7 ? ) ^ + £ 2 X ^ ^ ^ 

- 2 ( E k M ) 2 - 2 ( E k/krk)2}[3+6a+G+6(a+a)2] 
+ 2{Z L(l-2kz(l-v)pz+k2)rktk+(\+4Is)kysktk 

+ ( X - 4 Z u ) A . « k r k ] - 2 ( £ k / k r k ) . ( £ l M ) } [ l - 2 a t a - 2 ( a t a ) 2 ] 
+ 2{ZL(^2kz(l-V)pz+k2)qk

2+2(\+4Is)kyu^^ 

+ 2 { E [ [ ( l - 2 ^ ( l - ^ + ^ ) A - ( 4 ™ / S ) 1 / 2 ( l A ) ] ( r k - / k ) ] } ( l + 2 ^ ) . (27) 

In (27) we have used the following relations for the 
diagonal parts of operators 

(a t+a) 4 | D= ( a t - a ) 4 | D = 3+6rfa+6(rfa)2, 

(tf-a)2(tf+a)2\D=(tf+a)2(d--ay\D 

==l — 2a^a—2(a^a)2, 

(aW-aa)2\ D= -2(l+tfa+ (tfa)2), 

where if B is an operator, B \ D is the diagonal part of B 
in the states (9). 

To complete the variational calculation we must mini
mize the ground-state energy from (26) and (27) with 
respect to fk, sk, uk, rk, tk, and qk. At first sight this 
seems formidable. However our initial postulate that fk 

is of order X°, sk and uk of order X and rk, tk, and qk of 
order X2 suggests that to obtain a first approximation for 
fk we should consider only terms in (0fl,pe\ (E^+Ei) 
X I pzfifi) of order X° and minimize them with respect to 
fk. These terms appear in E%; they give exactly the 
polaron energy of LLP, £ L L P , when the polaron mo
mentum is in the z direction, namely, 

E (1 - 2 £ ^ + ^ k 2 + ( E k/k
2)2 

- ( 8 n « / S ) E ( l / * ) / k . (28) 

Minimizing with respect to fk gives, as in LLP, 

/ 4 r o \ 1 / 2 1 
/ k = ( — ) • (29) 

\ S / k(l-2kz(l-v)pz+k2) 

Next we find a first approximation to sk and uk by 
minimizing all terms in the ground-state energy for 
fixed pz which depend upon sk and uk and are of no 
higher order than X2. These terms also appear only in £3 
and are 

Z(l-2kz(l-v)pz+k2)sk
2+2Is(\+2Is) 

+E^-2kz(l-v)pz+k2)uk
2+2Iu(~\+2Iu). (30) 

Minimizing the expression (30) we find 

(X+4T.)fty/k 

l-2k,(l-r,)pM+&' 

/Uk \Rx/ Ky)Sk j 

KW (31) 
/ . = - [ X + 4 7 J £ 

l - 2 * , ( l - i , ) ^ . + * » 
= - X / / ( l + 4 / ) , 

•*• u J- s j 
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where 

l-2kz(l-v)pz+k2' 

Using the solutions (31) we calculate r^, h, and q* 
from (27). Since we are neglecting terms of order \*pz

2 

we can set pz=0 in our expressions (29) and (31) for 
/k, £k, and ^k before substituting them into (27). The 
result upon minimizing the ground-state energy of E\ 
(at fixed pz) with respect to r^, h, and c/k is 

l-2kz(l-v)pz+k* 

(\—4:Iu)kxUk 

/ k = (32) 

l - 2 f e ( l - i 7 ) ^ + f t a 

(X—47w)^^k— (X+4/,)fey«k 

^ ~ 1 —2*.(1—17)#,+*» 
Note that (29), (31), and (32) are consistent with (21) 

and (22). 
If we now go back and recalculate /k using values of 

the other parameters given by (31) and (32) we find no 
correction to order X2 to the expression for /k given by 
(29). Thus for purposes of calculating Ez+Et to order 
X4, (29) is exact. By inspection there are no corrections 
to.^k and UY in (31) of order lower than X3. Corrections 
to ^k and Wk of order X3 contribute to the energy in order 
X6. We therefore conclude that (29), (31), and (32) are 
exact to the order of our calculation. 

Evaluating the energy expectation value in the limit 
of infinite volume using (25), (27), (29), (31), and (32) 
we obtain finally 

ET= -a+»(^(n+±)+pA 

3 coc / a)c \ 

M4-4 (n+^-+Pz2) 
40 co \ co / 

1 /coA2 

+-(M+3V - U , (33) 
96 \ co / 

where 
: M = 6 / ( 6 + a ) . 

In obtaining (33) we have used the variational result 
of LLP that the energy of a polaron with momentum p 
is given by 

-a+ixp2- (3/40)fxYa+O(p6). (34) 

We have neglected terms of order X4^s
2 and X2 >̂2

4 in (33), 
assuming, as before, that pz

2 and X2 are of the same order 

of smallness. I t should be emphasized again that (33) is 
expected to be most accurate for low-lying states, 
^ 2 « 1 , ^X 2 «l . 

Comparing (33) and (34) we find that in the limit (5) 
if we formally replace wcoc/co in (33) by pi2, (33) becomes 
equal to (34). Thus our calculation, within its limits of 
accuracy, verifies (3). 

We now inspect terms of (33) which vanish in the 
limit (5). The term J/-t(coc/co) is easily identified as the 
zero-point energy of the polaron with the LLP effective 
mass, in the magnetic field. To understand the term 

3 coc / coc \ 
M4-a ( ( » + * ) — W , (35) 

40 co \ co / 

we must recognize the possibility that the presence of an 
external field can alter the internal structure of the 
polaron so that the effective mass becomes explicitly 
field dependent.7 We therefore regard the factor 
— 3ju4coca/40co as the lowest order field-dependent cor
rection to fx (where ju is the ratio of the band mass to the 
LLP effective mass). 

Finally, we identify the remaining term 

(M+3)M
2COCV96CO2 

as the lowest order residual magnetic correction to the 
field-free polaron ground-state energy, since we cannot 
regard this term as arising from an effective mass 
correction associated with the zero-point motion of the 
polaron. 

In order to compare (33) with the weak coupling 
solution to be derived in the next section, we evaluate 
ET to order a in the ground state and first excited mag
netic state (w=l ) . The weak coupling limit for the 
ground-state energy of (33) is 

1 / Q:\COC 1 /coA2 

-a+- 1 — ) — f — ( - ) a , (36) 
2 \ 6/co 240\co/ 

while the energy difference between the ground state 
and first excited magnetic state is 

/ a\coc 3 /coA2 

1 — ( - ) . « . (37) 
\ 6/co 20 \co / 

PERTURBATION THEORY 

In this section we calculate the ground-state energy 
and the energy of the n= 1, pz=0 state by treating 5Ci in 
(8) as a perturbation on the eigenfunctions of 3Co given 
by (7). We do this in order to show that to order X4 the 
corresponding variational energies of (33) are exact in 
the weak coupling limit. Also, it turns out to be rela
tively easy to calculate the energy to higher order than 
X4 in the weak coupling case by the method given. 

7 This has been demonstrated for a polaron in an electric field in 
the weak coupling case. D. M. Larsen, Phys. Rev. 133, A860 
(1964). 
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The unperturbed states may be written 

\Hn,p*,pz))\{nk}), 

where |^) and | {n*}) are assumed normalized, 

{.{£*+^y?+fa2+m I * (n,px,pz)) 
= C ( « + | ) X 2 + i > / ] | ^ ( ^ ^ 2 ) > (38) 

and 

Wfti |{»*»=iVi|{nk}>, (39) 

where Ni is the number of phonons of wave vector 1 in 
the state | {wk}). We shall denote the phonon vacuum 
state by |0) with |k) defined by b^\0)= |k>. 

We take as unperturbed ground-state wave function 
the state 

|lK0,0,0)>|0>. (40) 

From (8) we observe that 5Ci connects (40) only to 
unperturbed states of the form 

\\p(n,kx,ke))\k), 

with energy 1+ (n+%)\2+kz
2. The matrix element 

<k| < I K * , M . ) | *-*-*jkt |̂ (o,o,o)> I o) 

contains, besides trivial factors, a factor of the form In 

r - / _ 
In= / dyHn 

My~yo)Y_ 

\ v2 
e-\n(y-yo)2+y2]!4e-ikyy ? (44) 

where Hn(x) is the Hermite polynomial in % of ^th 
order. To evaluate (41) we evaluate ]£ tnIn/n\ by re
placing ^2, tnHn{oo)/n\ by e~t2+2tx and performing the 
resulting integral. We then extract In from its genera
ting function by differentiation. The result is that the 
perturbation expression giving the energy correction in 
order a is 

Awa exp-
— z — 

S k 

Wx)2 . 
k2 n » ! \X / l+n\2+k2 

(42) 

We propose to evaluate (42) in a power series in X2. 
To do this we observe that for fixed ki2 the summand in 
(42) is a sharply peaked function of n as X —» 0 because 
of the factor (1/n!) (kj\)2n. The value of n which 
maximizes this factor is approximately 

»o=(* iA)2 . (43) 

This motivates the expansion of the factor (1+nX2 

+kz
2)-1 in (42) as follows: 

= [ ( l + » o \ 8 + W ) + ( » - W o ) X a J - 1 

1 f (n—n$)\2 /(n—no)\2\2 
r («-»0)X2 / ( 

:2L 1+k2 \ -J (44) 
1+&2L 1+k2 \ 1+k2 

We insert expansion (44) into (42) and perform the 

summation on n on each term of the expansion. To do 
this in a systematic way consider sums of the form 

Si=e~* E nl(xn/nl) 
n=0 

for 1^0, 

5 0 = 1 . 

From (45) it is easy to show 

(45) 

(46) 

so that Si=x, 5 2 = x 2 + x , ^ 3 = x 3 + 3 x 2 + X , etc. If we 
make the identification 

C = n0=(kl/\)
2, (47) 

then (42) becomes 

1 
— z 

S k k2(l+k2) 
1-

X 2 (5 ! - x ) \i(S2-2xS1+x
2) 

l+k2 (1+k2)2 

X 6 ( ^ 3 - 3 5 2 X + 3 5 l X
2 - x 3 ) 

( l+£ 2 ) 3 ] • 
(48) 

First we note from (47) that x is of order X-2. From 
(46) it follows that the highest power of x in Si occurs as 
X1. I t is clear that if we keep only these highest powers 
in each Si (which amounts to replacing Si by x0> a n 

terms in the bracket in (48) vanish except for the first. 
This means that to order X° the only contribution from 
(42) is 

47ra 1 
E - . (49) 

$ k k2(l+k2) 

Next we look for contributions in order X2 in (48). 
These come only from terms in S1 of order xz_1- From 
the recursion relation of (46) it is easy to show that the 
coefficient of this term in S1 is \l(l— 1). Therefore we can 
replace .SYby %l(l— l )x3 _ 1 in (48) to obtain all contribu
tions to order X2. The contribution of the ( w + l ) s t term 
in the bracket in (48) is 

m—2 

\m(m—l) YL 
(m-2)\ 

r=o (m— 2 — r)\r\ 
C. j\r+nu.mr -I \2 

\l+k2 

=x2- w 
Om,2, 

(1 + k2)2 

where 8itj is the Kronecker delta. Thus the total 
contribution to order X2 in (48) comes solely from the 
third term (w=2) in the bracket and is 

47TO! kj2 

X2£ . 
S k k2(l+k2Y 

(50) 

Finally, in order X4 we can replace Si by (1/24) 1(1— 1) 
X(l—2) (3/—5)x*~~2 and proceeding as above we find 
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that only the fourth and fifth terms in the bracket 
contribute, the sum of the contributions being 

W 
-4iraX4 - £ 

L k2(i+k2y 
-3£ w 

(i+*»)8J 
(51) 

Converting the summations on k to integrations in 
the limit of infinite volume and adding the contributions 
(49)-(51) to the zero-point energy, §X2, of the un
perturbed state (40), we obtain the weak coupling re
sults for the ground-state energy, JBWC, to order X4: 

1 coc/ a\ /o)c\
2 a 

£ w c = - a + ( 1 — ) + ( - ) — • (52) 
2 co\ 6 / W 240 

The energy of the first excited magnetic state is 
obtained from perturbing 

I*(1A0)>|0>, 

which yields the expression (53) corresponding to (42) 

4™ e x p - (k,/\)2 1 

x2E E -
S k kx

2k2 n n\ (n~X~2kx
2)2 

• • ( - ) 
(53) 

We expand the factor (1+ (n— l)X2+^2
2)-1 in powers of 

[_(n—l)\2—kx
22/(l+k2) and evaluate (53) by the same 

technique used to evaluate (42). We find that the weak 
coupling excitation energy of the first excited magnetic 
state is 

(^Y^^WpY) . (i4) 
\ 6/co 20\co/ V V c o / / 

Comparing (52) and (54) to (36) and (37), respectively, 
shows that the variational ground-state and first excited-
state energy become exact in the weak-coupling limit. 

DISCUSSION 

It should be possible to observe the main features of 
the energy spectrum (33). Ascarelli and Brown8 have 
observed a polaron cyclotron resonance line in AgBr at 
70 kMc/sec in a field of 6600 Oe. The line was narrow 
enough so that its peak could be located within a few 
percent. In a field ten times stronger a much narrower 
resonance line would be expected, and for reasonable 
values of a one should in principle be able to resolve a 
magnetic fine structure and observe the nonlinear de
pendence of the resonance energy levels on the magnetic-
field strength. 

Of course we have simplified the theoretical calcula
tion by assuming that to order X4 we can still describe 
the interaction of the electron with the rigid lattice by a 

8G. Ascarelli and F. C. Brown, Phys. Rev. Letters 9, 209 
(1962). 

band mass. It may be that the correct band mass de
pends upon coc, in which latter case additional nonlinear 
effects in the cyclotron resonance will be observed. 

It is difficult to estimate the accuracy of our vari
ational energy. We have proved that it is exact to order 
a in the weak coupling limit but we do not really know 
how rapidly the error increases with a. If we assume that 
the LLP effective mass for a =2 is within 5% of the 
correct value in the field-free case, then we might expect 
that correction terms in (33) which go as /x4 would be 
within perhaps 20% of their true value for a =2. This 
error would decrease rapidly with decreasing a. 

A calculation of the magnetic energy levels of the 
polaron has been made previously by Tulub.9 He finds 
that the polaron effective mass for weak fields is given 
by the LLP effective mass plus a term proportional to 
(coc/co)2. This result is in disagreement with (33) of the 
present paper. Tulub does not calculate the ground-
state energy of the system nor does he recognize that the 
polaron magnetic levels at fixed pz are not equally 
spaced. Although derived for the intermediate coupling 
region, Tulub's effective mass does not approach the 
weak coupling result to order a. It is not completely 
clear that the mathematical method and approximations 
used by Tulub are appropriate for the problem of the 
polaron in a magnetic field. 

Hellwarth and Platzman10 (henceforth called HP) 
have calculated the free energy of polarons in a magnetic 
field by Feynman's method. This method is superior in 
accuracy to the LLP method (a modification of which is 
employed in the present paper) for calculating the 
ground-state energy and effective mass for free polarons. 
It would be interesting to compare the energy spectrum 
which produces the HP free energy to the spectrum 
obtained here. Unfortunately, HP do not calculate 
energy levels explicitly, and the comparison is difficult. 

Because the LLP method normally produces a 
ground-state energy which goes over to the ground-
state energy of perturbation theory for small a, it is of 
some interest to investigate the result of perturbation 
theory in the case X»l with arbitrarily small nonzero 
a. To this end we examine the order of the individual 
terms of the sum on n in (42) in the limit X —><*>. We 
find that for n^0 every term is of order —a/X and that 
the sum on all n^O is convergent; however, the n=0 
term is of order —a lnX. Thus for X sufficiently large the 
energy correction in perturbation theory to order a is 
given by the n=0 term. The perturbed energy is 
therefore 

|<k|<*(o,M.)|3CiliKo,o,o)>|o>|» 
i \2_ v . (55) 

k l + kz 

Assuming that a perturbation expansion in a for the 
9 A. V. Tulub, Zh. Eksperim. i Teor. Fiz. 36, 565 (1959) [English 

transl.: Soviet Phys.—JETP 9, 392 (1959)]. 
10 R. W. Hellwarth and P. M. Platzman, Phys. Rev. 128, 1599 

(1962). 
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ground state is possible when X is very large and fixed, 
we conclude that a power-series expansion in X2 of the 
ground-state energy has a finite radius of convergence 
in the weak-coupling limit. This suggests strongly that 
the modified LLP variational method employed in this 
paper, even if carried out to all orders in X, would fail for 
X^>1. We should note, however, that in typical ionic 
crystals X= 1 when the applied fields are in the hundreds 
of kilogauss. At such field strengths the validity of the 
Frohlich Hamiltonian, given by (6)-(8), is doubtful. 

The question of how the size of a affects the radius of 
convergence of an expansion of the ground-state energy 
in powers of X2 obtained from carrying out the modified 
LLP variational method to all orders in X2, remains 
unanswered. 

In the limit of very weak field, namely, the limit (5), 
one can show, using a method due to Platzman11 for 
performing the summation on n in (42), that the weak-
coupling energy to order a is correctly given by the 

11 P. M. Platzman, Phys. Rev. 125, 1961 (1962). 

eigenvalues of the effective Hamiltonian obtained by 
replacing p2 by n 2 in the field-free weak-coupling polaron 
energy, given by1 

EWC(P2) = 
sin-^O2)1/2]-

(f) 1/2 

The essential step in the proof of this result is to neglect 
the commutator \j>y,y] wherever it appears. This neg
lect can be rigorously justified in the limit (5). The 
effective Hamiltonian £ w c (n 2 ) is applicable only when 
the condition 

n\2+p2<l 
is satisfied. 

The validity of replacing the field-free polaron energy 
spectrum E(p2) by E(n\2+pz

2) in the presence of a 
sufficiently weak magnetic field is undoubtedly not re
stricted to the weak coupling limit, but the author has 
not yet found a rigorous proof of this for the inter
mediate coupling case. 
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Volume Magnetostriction in Gadolinium Single Crystals* 
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The magnetostriction of single-crystal gadolinium has been measured from 77 to 325 °K in magnetic 
fields up to 20 kOe. A preliminary result of this work is the behavior of the forced volume magnetostriction. 
These results have been employed to obtain the partial differential coefficient of Curie temperature as a func
tion of pressure over the above temperature range by means of the well-known thermodynamic expression 
due to Kornetzki. It is found that dd/dP = -1.26±0.10 °K/1000 atm at 290°K. These results are compared 
with the results obtained by direct measurement and discussed further. 

TH E forced volume magnetostriction above techni
cal saturation in ferromagnetics is related to the 

pressure dependence of the magnetization through the 
thermodynamic relation 

(du/dH)p=-(dI/dP)H, (1) 

where co = AV/V. Kornetzki,1 assuming that a change in 
the spontaneous magnetization with a change in the 
volume at a definite temperature and at a definite mag
netic field can occur only through a volume dependence 
of the Curie temperature or the exchange interaction 
energy and an arbitrary form for MH,T=f(T/dyH), 
where 6 is the Curie temperature, finds that the forced 
volume magnetostriction and the pressure dependence 

* Work supported by the U. S. Atomic Energy Commission. 
i M. Kornetzki, Z. Physik 98, 289 (1935). 

of the Curie temperature are related through2 

l/d(d$/dP) 

da 
= l/T(da/dB) 

L dT 
-0/K(da/dH) , (2) 

where p is the density, a the specific magnetization, /3 
the volume thermal expansion coefficient, and K the 
volume compressibility. 

The magnetostriction of single crystals of gadolinium 
has been measured from 77 to 325°K in magnetic 
fields up to 20 kOe. A preliminary result from this study 

2 The right band of Eq. (2) should be multiplied by (1+H/NI), 
where N is the Weiss molecular field factor. Calculating N from 
the susceptibility measurements in the paramagnetic region 
H/NI was found to be less than 0.03 and consequently was 
neglected. 


